Released 11/2022 | SnapGene 6.2 Detailed Release Notes
SnapGene 6.2 adds improvements to RNA secondary structures, protein properties, Golden Gate cloning simulation tools and PCR simulations, with modernized buttons and icons across the platform.
Watch an overview of new features in SnapGene 6.2
Suboptimal RNA secondary structures are now shown. All structures can be recalculated using adjusted Tm and other settings. Visualization and selection capabilities have been enhanced, including the ability to display and make sequence selections that are synced across all views. Coordinates and 5' / 3' end labels can optionally be displayed. See View Predicted RNA Secondary Structure for more information.
Various enhancements to the Golden Gate cloning dialogs include a ligation fidelity matrix for assessing overall reaction fidelity, it is now possible to adjust overhangs for manually designed primers. There is also a new option to cut the vector with any enzymes (not just Type IIS enzymes), as well as an updated settings dialog with easy access to recommended enzymes.
You can now adjust the hybridization region for all PCR cloning simulations (e.g. PCR, Golden Gate, Gibson, In Fusion, etc.). When using automatic primer design the hybridized region will be configured automatically, ensuring miscellaneous features are not transferred to the product when a 5’ primer extension by chance partially hybridizes to the template.
Copy or export the properties and amino acid data for full protein sequences or selected regions in text or spreadsheet (*.csv / *.tsv) formats. Individual properties can also be copied directly from the view.
SnapGene now uses modernized icons in the top toolbar. The application icon and file icons have also been updated.
Released 07/2022 | SnapGene 6.1 Detailed Release Notes
SnapGene 6.1 provides new functionality for cloning and visualizations. Highlights include a new Golden Gate Assembly tool, Secondary Structure view for ssRNA sequences, and support for Dark mode across all operating systems.
Watch an overview of new features in SnapGene 6.1
Confidently simulate Golden Gate Assembly with a new tool which can automatically design primers and overhangs for Golden Gate, optimizing the reaction fidelity to maximize the likelihood of success.
► Watch to learn how to simulate Golden Gate Assembly in SnapGene
Visualize how your single stranded RNA sequences will fold with a new Secondary Structure view which displays the optimal structure as calculated by the ViennaRNA Package.
The SnapGene user interface now supports dark mode and by default will match your Dark or Light mode operating system setting.
Customize how content is exported to GenBank including LOCUS field identifier feature export options using the new Export panel in Preferences.
SnapGene now runs natively on Apple computers with M1 silicon chips.
Released 11/2021 | SnapGene 6.0 Detailed Release Notes
SnapGene 6.0 provides greater flexibility for working with cloning simulations, features, and agarose gels. Highlights include new tools for silently adding or removing restriction sites, support for custom feature types, sharable agarose gel files, and improved options for fragments chosen for cloning simulations.
Watch an overview of new features in SnapGene 6.0
The set of available feature types can now be extended to include custom types (non-GenBank), and default feature colors can be changed.
Agarose gel simulations can now be saved as .gel files, allowing gels to be viewed and edited later or shared with others.
Editable features are now fully supported in both pairwise and multiple sequence alignments, with the ability to add, edit, and search from either the Alignment view or the new Features view.
New flexibility in cloning simulation dialogs enables fragments to be added, removed, or re-ordered within the cloning interface. Vectors can now be flipped when simulating restriction cloning, Gibson Assembly, In-Fusion Cloning, and NEBuilder HiFi Assembly.
Released 5/2021 | SnapGene 5.3 Detailed Release Notes
SnapGene 5.3 adds a number of visualization enhancements, including features within multiple sequence alignments as well as new viewing options for histories, primers, sequences, and chromatogram files. Data management is also improved with more flexible file organization in Collections, improved Geneious format conversion, and support for RNA sequence files.
Watch for an overview of the new features in SnapGene 5.3
Features in the input sequences are carried through to the alignment, allowing you to visualize aligned regions in context.
History view now supports both the traditional Maps format and a new Text format.
The new .rna file format allows you to create, view, and edit RNA sequences.
Organize all of your DNA, RNA, and protein files within a single list or folder tree in a Collection, and add new folders across the different areas in a single step.
New layout options allow sequences to be displayed with gaps every 3rd or 10th base.
Overlap two oligos, and then convert to double-stranded DNA in a single step by filling in the overhangs.
A DNA sequence can now be annotated with primers that anneal at the 5’ end but not the 3’ end.
Display and print a chromatogram in multi-line format to view the trace more efficiently.
Individual .geneious protein and nucleotide sequences, including features, primers, and alignments, are now imported more reliably with richer information.
Released 10/2020 | SnapGene 5.2 Detailed Release Notes
SnapGene 5.2 provides visualization and performance enhancements. Highlights include GC content visualization, support for finding similar DNA sequences, simulation of supercoiled DNA migration in agarose gels, support for ssDNA sequences, and Sequencher file import.
Watch for an overview of the new features in SnapGene 5.2
A GC content color or line plot can now be displayed in Map view, and bases can be colored by GC or AT in Sequence view.
When searching for DNA sequences, imperfect matches containing gaps or mismatched bases can be found, and search performance has been optimized.
When simulating agarose gels, the migration of uncut circular sequences can be visualized, and supercoiled MW markers can be used.
A single-stranded DNA (ssDNA) sequence can now be created or imported, with support for feature annotation and sequence manipulations.
When editing sequences, the history is compressed to allow efficient storage as well as Undo for large sequences.
The set of supported protein feature types has been extended, including support for the misc_feature type.
Sequencher files can now be imported into a SnapGene collection.
Released 4/2020 | SnapGene 5.1 Detailed Release Notes
SnapGene 5.1 provides enhanced flexibility for displaying and annotating sequences. Highlights include an improved layout for linear maps, an optional split view for sequence windows, more versatile controls for enzyme visibility, and links between related folders in different areas of a SnapGene collection.
Enzyme sites and other annotations in a linear map are now allowed to overlap, thereby reducing map height while preserving legibility.
A DNA or protein sequence window can be split to show two different views, or two versions of the same view.
Like features and primers, individual enzymes can now be shown or hidden using check boxes.
When a SnapGene collection stores related files in the DNA Files, Protein Files, and Miscellaneous Files areas.
When adding references to the Description Panel, a variety of reference types are now available.
When importing features from another SnapGene file or detecting common features, the match threshold can be adjusted between 80-100%.
A SnapGene collection now supports batch edits of multiple files for flipping sequences, importing features or primers, detecting features or primers, performing BLAST searches, and specifying entries in the Description Panel.
In a sequence trace file, the “A” trace can be displayed with stripes to support researchers with color vision disabilities.
Type IIS enzymes, which are used for Golden Gate assembly, can be displayed using a pre-defined enzyme set.
Released 9/2019 | SnapGene 5.0 Detailed Release Notes
SnapGene 5.0 adds new capabilities and display options including pairwise alignment, import from the Ensembl database, support for directional TOPO cloning, and improved tools for alignment to a reference DNA sequence.
Pairs of DNA or protein sequences can be analyzed by local, global, or semi-global alignment.
Gene or transcript data from the Ensembl genome browser can now be imported directly into SnapGene.
A new interface simulates directional TOPO® cloning into topoisomerase-activated vectors.
The interface for aligning to a reference DNA sequence has been enhanced. Controls for various display options are more intuitive, and alignment can be restricted to a designated strand or region of the reference sequence.
For a sequence that has been partially aligned to a reference DNA sequence, the nonaligned end portions can now be dragged out and visualized.
The Anza™ enzyme system from Thermo Fisher (Invitrogen) has been incorporated into SnapGene’s enzyme database.
The background color for the SnapGene interface can be changed.
Features can be shown or hidden based on feature type.
Amino acids in a translated feature can be set to lowercase, and a stretch of amino acids can be copied in 3-letter format.
A codon frequencies table can be generated for one or more translated features.
A selected region of a DNA alignment can be translated to generate the corresponding protein alignment.
When a cDNA is aligned to a reference genomic DNA sequence, the cDNA can be used to create a feature in which gaps are annotated as introns.
Selections are now marked with extended lines, which clarify the selection endpoints and also enhance visibility for small selections.